Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 60(16): 11739-11744, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34101467

RESUMO

Metal-organic frameworks (MOFs) offer many opportunities for applications across biology and medicine. Their wide range of chemical composition makes toxicologically acceptable formulation possible, and their high level of functionality enables possible applications as delivery systems for therapeutics agents. Surface modifications have been used in drug delivery systems to minimize their interaction with the bulk, improving their specificity as targeted carriers. Herein, we discuss a strategy to achieve a tumor-targeting drug-loaded MOF using "click" chemistry to anchor functional folic acid (FA) molecules on the surface of N3-bio-MOF-100. Using curcumin (CCM) as an anticancer drug, we observed drug loading encapsulation efficiencies (DLEs) of 24.02 and 25.64% after soaking N3-bio-MOF-100 in CCM solutions for 1 day and 3 days, respectively. The success of postsynthetic modification of FA was confirmed by 1H NMR spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography-mass spectrometry (LC-MS). The stimuli-responsive drug release studies demonstrated an increase of CCM released under acidic microenvironments. Moreover, the cell viability assay was performed on the 4T1 (breast cancer) cell line in the presence of CCM@N3-bio-MOF-100 and CCM@N3-bio-MOF-100/FA carriers to confirm its biological compatibility. In addition, a cellular uptake study was conducted to evaluate the targeting of tumor cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Curcumina/química , Portadores de Fármacos/química , Estruturas Metalorgânicas/química , Terapia de Alvo Molecular , Química Click , Curcumina/farmacologia , Curcumina/uso terapêutico , Ácido Fólico/química
2.
J Am Chem Soc ; 143(21): 8022-8033, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34003001

RESUMO

Traditional chemical sensing methodologies have typically relied on the specific chemistry of the analyte for detection. Modifications to the local environment surrounding the sensor represent an alternative pathway to impart selective differentiation. Here, we present the hybridization of a 2-D metal organic framework (Cu3(HHTP)2) with single-walled carbon nanotubes (SWCNTs) as a methodology for size discrimination of carbohydrates. Synthesis and the resulting conductive performance are modulated by both mass loading of SWCNTs and their relative oxidation. Liquid gated field-effect transistor (FET) devices demonstrate improved on/off characteristics and differentiation of carbohydrates based on molecular size. Glucose molecule detection is limited to the single micromolar concentration range. Molecular Dynamics (MD) calculations on model systems revealed decreases in ion diffusivity in the presence of different sugars as well as packing differences based on the size of a given carbohydrate molecule. The proposed sensing mechanism is a reduction in gate capacitance initiated by the filling of the pores with carbohydrate molecules. Restricting diffusion around a sensor in combination with FET measurements represents a new type of sensing mechanism for chemically similar analytes.

3.
ACS Appl Mater Interfaces ; 13(13): 15482-15489, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780621

RESUMO

In this work, we demonstrate a facile synthesis of UiO-66-NH2 metal-organic framework (MOF)/oxidized single-walled carbon nanotubes (ox-SWCNTs) composite at room temperature. Acetic acid (HAc) was used as a modulator to manipulate the morphology of the MOF in these composites. With a zirconium oxide cluster (Zr) to 2-aminoteraphthalate linker (ATA) 1:1.42 ratio and acetic acid modulator, we achieved predominately heterogeneous MOF growth on the sidewalls of CNTs. Understanding the growth mechanism of these composites was facilitated by conducting DFT calculations to investigate the interactions between ox-SWCNTs and the MOF precursors. The synthesized composites combine both microporosity of the MOF and electrical conductivity of the SWCNTs. Gas sensing tests demonstrated higher response for UiO-66-NH2/ox-SWCNT hybrid toward dry air saturated with dimethyl methylphosphonate (DMMP) vapor compared to oxidized single-walled carbon nanotubes (ox-SWCNTs) alone.

4.
Chem Sci ; 11(47): 12807-12815, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34094475

RESUMO

Metal-organic frameworks constructed from multiple (≥3) components often exhibit dramatically increased structural complexity compared to their 2 component (1 metal, 1 linker) counterparts, such as multiple chemically unique pore environments and a plurality of diverse molecular diffusion pathways. This inherent complexity can be advantageous for gas separation applications. Here, we report two isoreticular multicomponent MOFs, bMOF-200 (4 components; Cu, Zn, adeninate, pyrazolate) and bMOF-201 (3 components; Zn, adeninate, pyrazolate). We describe their structures, which contain 3 unique interconnected pore environments, and we use Kohn-Sham density functional theory (DFT) along with the climbing image nudged elastic band (CI-NEB) method to predict potential H2/CO2 separation ability of bMOF-200. We examine the H2/CO2 separation performance using both column breakthrough and membrane permeation studies. bMOF-200 membranes exhibit a H2/CO2 separation factor of 7.9. The pore space of bMOF-201 is significantly different than bMOF-200, and one molecular diffusion pathway is occluded by coordinating charge-balancing formate and acetate anions. A consequence of this structural difference is reduced permeability to both H2 and CO2 and a significantly improved H2/CO2 separation factor of 22.2 compared to bMOF-200, which makes bMOF-201 membranes competitive with some of the best performing MOF membranes in terms of H2/CO2 separations.

5.
Adv Healthc Mater ; 8(21): e1900622, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31583857

RESUMO

In order to address material limitations of biologically interfacing electrodes, modified silica nanoparticles are utilized as dopants for conducting polymers. Silica precursors are selected to form a thiol modified particle (TNP), following which the particles are oxidized to sulfonate modified nanoparticles (SNPs). The selective inclusion of hexadecyl trimethylammonium bromide allows for synthesis of both porous and nonporous SNPs. Nonporous nanoparticle doped polyethylenedioxythiophene (PEDOT) films possess low interfacial impedance, high charge injection (4.8 mC cm-2 ), and improved stability under stimulation compared to PEDOT/poly(styrenesulfonate). Porous SNP dopants can serve as drug reservoirs and greatly enhance the capability of conducting polymer-based, electrically controlled drug release technology. Using the SNP dopants, drug loading and release is increased up to 16.8 times, in addition to greatly expanding the range of drug candidates to include both cationic and electroactive compounds, all while maintaining their bioactivity. Finally, the PEDOT/SNP composite is capable of precisely modulating neural activity in vivo by timed release of a glutamate receptor antagonist from coated microelectrode sites. Together, this work demonstrates the feasibility and potential of doping conducting polymers with engineered nanoparticles, creating countless options to produce composite materials for enhanced electrical stimulation, neural recording, chemical sensing, and on demand drug delivery.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Nanopartículas/química , Polímeros/química , Sistemas de Liberação de Medicamentos/métodos , Microeletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...